`cosx - sinx` 可以通过三角恒等变换进行化简。根据和差化积公式,我们可以得到:
```
cosx - sinx = \(\sqrt{2}\left(\frac{\sqrt{2}}{2}\cos x - \frac{\sqrt{2}}{2}\sin x\right)\)
= \(\sqrt{2}\left(\cos\frac{\pi}{4}\cos x - \sin\frac{\pi}{4}\sin x\right)\)
= \(\sqrt{2}\cos\left(x + \frac{\pi}{4}\right)\)
```
所以,`cosx - sinx` 等于 \(\sqrt{2}\cos\left(x + \frac{\pi}{4}\right)\) 或者 \(\sqrt{2}\sin\left(x - \frac{\pi}{4}\right)\)