十大等价代换_高数常见等价代换
等价代换常用公式是什么?等价无穷小:高数中常用于求x趋于0时候极限,当然,x趋于无穷的时候也可求,转化成倒数即成为等价无穷小。
2、等价替换公式。高等数学等价替换公式是如下:当x→0,且x≠0,则x~sinx~tanx~arcsinx~arctanx。x~ln(1+x)~(e^x-1)。(1-cosx)~x*x/2。[(1+x)^n-1]~nx。loga(1+x)~x/lna。a的x次方~xlna。(1+x)的1/n次方~1/。
3、等价替换公式是什么?等价替换公式如下:sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~(1/2)*(x^2)~secx-1 (a^x)-1~x*lna ((a^x-1)/x~lna)(e^x)-1~x ln(1+x)~x (1+Bx)^。
4、极限有哪些等价代换?极限时的等价公式:e^x-1~x (x→du0) e^(x^2)-1~x^2 (x→dao0)1-cosx~1/2x^2 (x→0)1-cos(x^2)~1/2x^4 (x→0)sinx~x (x→0)tanx~x (x→0)arcsinx~x (x。
5、高等数学等价替换公式是什么?高等数学等价替换公式是如下:当x→0,且x≠0,则x~sinx~tanx~arcsinx~arctanx。x~ln(1+x)~(e^x-1)。(1-cosx)~x*x/2。[(1+x)^n-1]~nx。loga(1+x)~x/lna。a的x次方~xlna。(1+x)的1/n次方~1/。
高数常见等价代换
1、等价无穷小的代换公式有哪些?被代换的量,在去极限的时候极限值为0。被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。无穷小比阶:高低阶无穷小量:lim(x趋近于x0)f(x)/g(x)=0,则称。
2、求常用的等价无穷小替换。tanx~x arcsinx~x arctanx~x 1-cosx~x^2/2 a^x-1~xlna e^x-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~1/nx loga(1+x)~x/lna 求极限时,使用等价无穷小的条件:被代换的量,在取极限。
3、求详细的等价无穷小的替换公式。等价无穷小:(C为常数),就说b是a的n阶的无穷小, b和a^n是同阶无穷小。特殊地,C=1且n=1,即,则称a和b是等价无穷小的关系,记作a~b。常用无穷小的等价代换 当x→0时, sinx~x tanx~x arcsinx~x。
4、高数中8个常用等价无穷小是哪些?1-cosx~(1/2)、(x^2)~secx-1 、(a^x)-1~x*lna ((a^x-1)/x~lna) 、(e^x)-1~x 、ln(1+x)~x 。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。求极限。
5、等价无穷大等价替换公式是什么?等价无穷小替换公式如下 :以上各式可通过泰勒展开式推导出来。等价无穷小是无穷小的一种,也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。极限:历史上是柯西(Cauchy,A。-。