解集是一个数学用语,指的是 以一个方程(组)或不等式(组)的所有解为元素的集合。这个集合包含了所有满足给定方程或不等式的解。解集可以有多种表示方法,包括列举法、描述法和图示法。
例如,对于方程 \(x^2 - 1 \geq 0\),其解集为 \(X = \{ x | x \leq -1 \text{ 或 } x \geq 1 \}\);对于方程 \(x^2 - 1 \leq 0\),其解集为 \(X = \{ x | -1 \leq x \leq 1 \}\);对于方程 \(x^2 - 3x - 4 = 0\),其解集为 \(X = \{-1, 4\}\)。
解集在数学中有着广泛的应用,很多问题的结论都需要用解集来表示。解集的概念不仅适用于方程和不等式,也适用于函数,例如函数 \(y = f(x)\) 的解集可以表示为满足 \(y = 0\) 的所有 \(x\) 的集合。
需要注意的是,无解的方程(组)或不等式(组)的解集为空集。